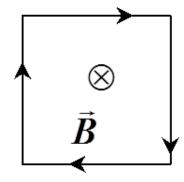
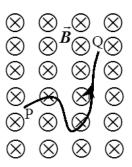
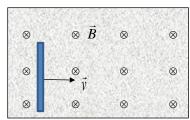
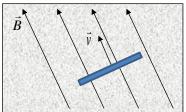

Guía 4: Fuerzas eléctricas y magnéticas sobre cargas en movimiento

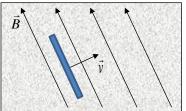
- 1. Compare las trayectorias de una masa puntual m que tiene una velocidad inicial v_0 (mucho menor que la velocidad de la luz) en un campo gravitatorio G (uniforme) con la de una carga puntual q que tiene la misma velocidad inicial v_0 en un campo electrostático E uniforme que tiene la misma dirección y sentido que G. Discuta distintas direcciones relativas entre los campo y la velocidad inicial de la partícula.
- 2. Un electrón ingresa con velocidad $\vec{v}_0 = 10^5 \ \breve{x} \ [\text{m/s}]$ en una región del espacio donde existe un campo uniforme $\vec{B} = 0.4 \ \breve{y} \ [\text{T}]$,
 - a) Calcule la fuerza magnética que actúa sobre el electrón.
 - b) ¿Qué tipo de movimiento realiza? Halle las ecuaciones horarias del movimiento y la trayectoria del electrón.
 - c) Analizar el comportamiento en el tiempo de la energía cinética del electrón.
 - d) ¿Cómo variaría la fuerza si se tratara de un protón? ¿O si se invierte el sentido de la velocidad \vec{v}_0 ? ¿O si se invierte el sentido del campo \vec{B} ?
- 3. Repetir el análisis del problema 1) si ahora, además del campo \vec{B} , existe un campo eléctrico uniforme $\vec{E} = 10 \ \breve{y} \ [kV/m]$.
- 4. Si no sabe previamente qué tipo de campo (\vec{E} o \vec{B}) actúa sobre una carga en movimiento, ¿puede deducirlo a partir de observar la trayectoria de la carga? ¿Cómo?
- 5. La figura muestra cuatro regiones con diferentes campos magnéticos uniformes (verde). Un objeto cargado positivamente (rojo) o negativamente (azul) ingresa a la zona con campo magnético. Determinar la dirección de la fuerza magnética que actúa sobre el objeto apenas ingresa a la zona con campo.



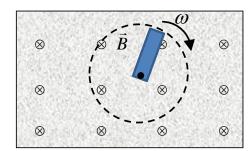

6. La figura muestra una región del espacio donde existe sólo un campo \overline{B} uniforme con dirección entrante y normal al papel. También se muestran las trayectorias coplanares de cinco partículas de igual masa m y cargas Q_1, Q_2, Q_3, Q_4 y Q_5 que ingresan a esta región con idéntico módulo del vector velocidad. Los radios de las trayectorias de las partículas 1, 2, 4 y 5 cumplen las siguientes relaciones: $R_2 = 2 R_1$, $R_4 = 3/2 R_1$ y $R_5 = 1/2 R_1$. Hallar las relaciones entre las cargas de las partículas: Q_2/Q_1 , Q_3/Q_1 , Q_4/Q_1 y Q_5/Q_1 .


7. Calcular la fuerza sobre cada lado de la espira cuadrada de 50 cm de lado de la figura y la fuerza total cuando por ella circula una corriente de 5 A y existe campo \vec{B} uniforme de 0.3 T perpendicular a la espira. ¿Dónde está aplicada cada fuerza? ¿Por qué lo considera así? Calcular el momento magnético de la espira y la cupla que actúa sobre ella si ahora el campo \vec{B} se coloca en el mismo plano de la espira. ¿Es necesario especificar desde qué punto del espacio se toma el torque? ¿Por qué? ¿Depende la cupla de la dirección de \vec{B} sobre este plano?




- 8. La espira circular de la figura, de radio R=20 cm y por la que circula una corriente de 3A, está ubicada dentro de un campo \vec{B} que forma un ángulo α con la normal a la espira.
- a) Calcular el momento magnético de la espira
- b) Calcular la cupla que actúa sobre ésta en función del ángulo α y graficarla.
- c) Repetir los cálculos para una bobina de 50 espiras como la de la figura.
- 9. La figura muestra un alambre de forma irregular (pero contenido en un plano) que lleva una corriente I del punto P al punto Q y que está en una región del espacio donde existe un campo \vec{B} perpendicular al plano del alambre. Demuestre que la fuerza que obra sobre el alambre es equivalente a la que obraría sobre un tramo recto de alambre que una los puntos P y Q. A partir de este resultado determine la fuerza sobre una espira irregular cerrada.

- 10. A partir de la Fuerza de Lorentz, explique y justifique cómo será la configuración de cargas final en los siguientes dispositivos (desprecie efectos de bordes).
 - a) Una barra conductora descargada en forma de paralelepípedo que se mueve a velocidad constante \vec{v} (respecto de un sistema SL) en una región del espacio donde existe un campo \vec{B} uniforme. Hacer un esquema cualitativo de los campos \vec{B} y \vec{E} desde un sistema fijo a la barra y desde el sistema SL



b) Una barra conductora que gira con velocidad angular ω alrededor de un eje centrado como se indica en la figuraen una región del espacio donde existe un campo \vec{B} uniforme.

c) Un disco conductor que gira con velocidad angular ω alrededor de un eje centrado como se indica en la figuraen una región del espacio donde existe un campo \vec{B} uniforme.

